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We use interlacing techniques to prove that carbon nanocones who have a Fries
Kekulé structure have closed Hückel shells, and that this result can be extended to all
conjugated cones where each edge belongs to a hexagonal face and the configuration of
the non-hexagonal faces are consistent with a Fries Kekulé structure. Cones with Fries
Kekulé structure or substructure are topical—not only from a valence bond theoretical
point of view—since a previous ab initio analysis favored cones where the pentagons at
the tip are configured as in a Fries Kekulé structure. The question of interdependence
will therefore be addressed.
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1. Introduction

Carbon nanocones are interesting synthesized [1, 2] structures with subtle
electronic properties [3–12] who may be exploited in field emission [9] and scan-
ning tunnelling microscopy [10]. Like the other novel carbon materials, the cones
have been considered for hydrogen storage in vehicles. Although the underly-
ing mechanism is not understood, the hydrogen storage characteristics of carbon
nanocones encourages further efforts [13]. For any application of the cones, it is
significant that an effective production process is already available [2]. This point
is of chemiphysical interest too, since cone-shaped molecular structures otherwise
rarely appear.

The topology of an open-ended carbon nanocone can be established by cut-
ting 1–5 sectors of angle 60◦ out of a flat hexagonal graphene sheet and joining
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the dangling bonds made by the cut. Assuming all bond lengths more or less
equal, this gives cone tips with 1–5 pentagonal faces, or alternative structures
with the same geometric curvature, implied by the fact that 1 square corresponds
to 2 pentagons and 1 triangle corresponds to 3 pentagons, according to Eulers
rule. Cones with pentagons at the tip are, however, considered most likely, since
faces of shorter length gives larger, and more concentrated, deviations from the
optimum 120◦ σ -bond angle.

The procedure described above is usually referred to as ‘the pentagon
model’ in order to distinguish the resulting cones from the conical helical whis-
kers [16–22] discovered in the late 1960s. The first experimental observation of
cones consistent with the pentagon model was published in 1994 [1]. In the hot
vapor phase, fullerene cones and open-ended cones were synthesized together
with tubes. The fact that all the observed cones had opening angles close to 19◦,
which corresponds to five pentagons at the tip, suggested that the tubes (with six
pentagons at the capped ends) and the cones grew from similar seeds [14].

Further research was motivated by the simultaneous synthesis of open-
ended cones with all the five apex angles consistent with the pentagon model
in 1997 [2]. The method used in this experiment is called Kværner’s Carbon-
Black process [15], where the residual hydrogen is recycled during the decompo-
sition of the heavy oil. With the plausible assumption of terminating hydrogens
at the open ends, these cones can therefore be understood as π -electronic sys-
tems, to which the Hückel theory applies. Despite this, the molecular graphs of
carbon nanocones have not attracted the same attention as the fullerene graphs.
The study [23–33] of fluoranthenoids (conjugated hydrocarbons composed of one
pentagonal ring among otherwise hexagonal rings) and indacenoids (two fused
pentagons surrounded by hexagons) that started at the beginning of the 1990s,
has proceeded seemingly independent of the discovery of carbon nanocones, as
the focus has been on enumeration of isomers.

The majority of the theoretical efforts to understand nanocones, who have
been successful indeed, have been devoted to the effects of the pentagons, as
topological defects in a graphene sheet, on properties related to potential nano-
electronic applications; the local densities of states near the Fermi level [3, 4,
9, 10], local metallization at the tips of cones with 60◦ apex angle (3 penta-
gons) [7, 11] and the anomalous Aharanov–Bohm effect [6, 7, 11, 12]. In the
only systematic work so far entirely concerned with the relative configuration
of the pentagons at the tips of nanocones [34], ab initio and semi-empirical
electronic structure calculations were used to determine the energetically favor-
able tip topologies, and the results were attributed to minimization of in-plane
and out-of-plane strain in the resulting geometries. In this work we will show,
among other things, that the favored tip configurations of [34] are imbedded
in cone topologies giving properly closed Hückel shells. This raises immediately
the question of interdependence, which we shall return to in the concluding
section.
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2. Hückel theory and curved graphene surfaces

The simple but effective Hückel theory has been an invaluable tool in the
study of planar hydrocarbons, largely because it directly invokes the powerful
graph theory. A topic that gained new actuality with the discovery of fullerenes
and nanotubes, is the applicability of this theory to non-planar graphene sur-
faces, where the π -orbitals cannot really be regarded as as a linear combination
of p-orbitals normal to the sp2 hybridization plane. A theoretically satisfactory
answer, as well as practicable quantitative methods, is given by the work of Had-
don [35–37]. He pointed out [35] that the success of the σ − π separability may
be attributed to the orthogonality of the σ - and π -orbitals rather than the very
concept of σ - and π -electrons who can be treated independent of each other. If
accepted as a basic principle, the orbital orthogonality provides an extension of
the σ −π separability to molecules with nuclear coordinates in three dimensions
[35], as well as a modified Hückel theory.

In the simplest Hückel theory, the Hamiltonian matrix for the π -orbitals
commutes with the adjacency matrix A(G) of the molecular graph G describ-
ing the σ framework of the carbons. It is customary to index the n eigenvalues
θ(A(G)) of A(G) in non-decreasing order

θ1(A(G)) � θ2(A(G)) · · · � θn(A(G)) (1)

and this convention gives the relation

θi(A(G)) = Ei(G) − α

β
, (2)

where Ei(G) is the energy of the i’th π -orbital in the Hückel spectrum, α is
the (negative) diagonal matrix element of the effective Hamiltonian, called the
Coulumb integral, and β is the negative [38] resonance integral. In a conjugated
carbon molecule n is even, and according to the simplest Hückel theory all
bonding π -orbitals are filled (2 electrons in each) and all empty π -orbitals are
antibonding if

θn/2(A(G)) > 0 > θn/2+1(A(G)). (3)

In Haddon’s modified Hückel theory for three dimensions [35] (which is
different from the earlier extented-Hückel theory [39] involving all the valence
electrons), β is replaced with position dependent scaled resonance integrals in the
Hamiltonian matrix. This gives a quantitative improvement of the results at the
cost of the correspondence with graph theory expressed by (2) for the simplest
Hückel theory. However, since the work of Haddon it is found [40–42] that the
geometry itself only has a minor impact on the levels around the Fermi energy
for curved carbon surfaces. Since the question of chemical stability is determined
by this part of the spectrum, the the graph-theoretical results derived in the fol-
lowing sections will therefore have significance.
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3. Interlacing and Rayleigh’s inequalities

If A and B are two symmetric matrices, and their respective eigenvalues
θ(A) and θ(B) satisfy Cauchy’s inequalities

θi(A) � θi(B) � θi+n−m(A), (4)

where n × n is the order of A, m × m is the order of B, and n � m � i, the
eigenvalues of B are said to interlace the eigenvalues of A. In this work we will
make use of the Interlacing Theorem (see, for example, [43] or [44]):

Theorem 1. Let A be a real symmetric n × n matrix and let B be a principal
submatrix of A with order m × m. Then, for i = 1, . . . , m,

θi(A) � θi(B) � θi+n−m(A). (5)

Applied directly to the spectrum of A(G), the adjacency matrix of the molecular
graph, this theorem is not strong enough to prove chemically interesting bounds
on the eigenvalues. For this we need in addition the powerful interlacing tech-
nique based on Rayleigh’s inequalities [45]:

uT Au

uT u
� θi(A), (6)

where A is a real symmetric matrix and u is a vector in the space spanned by
the first i eigenvectors of A, and

vT Av

vT v
� θi+1(A) (7)

if v is a vector outside this space.
If A is a real n × n matrix and R is an n × m matrix with the property

that RT R = I , it is found (see [43] or [46] for details) that Rayleigh’s inequalities
imply the bounds

θi(A) � (Rx)T ARx

(Rx)T
� θi(R

T AR), (8)

where x is a nonzero vector with the property that Rx lies outside the space of
the first i − 1 eigenvalues of A. Since θi(−A) = −θn+1−i(A) and θi(−RT AR) =
−θm+1−i(R

T AR), (8) implies

θi(R
T AR) � (Ry)T ARy

(Ry)T
� θi+n−m(A), (9)

where y is a nonzero vector and Ry lies outside the space of the last m − 1
eigenvalues of A. Summing up, we have, from (8) and (9),
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(a) if the n×m matrix R satisfies RT R = I , the eigenvalues of RT AR inter-
lace the eigenvalues of the n × n matrix A, and

(b) if Aui = θi(A)ui, R
T ARvi = θi(R

T AR)vi and θi(R
T AR) = θi(A), then

we have the relation ui = Rvi between the two eigenvectors, and likewise

(c) if θi(R
T AR) = θi+n−m(A), then ui+n−m = Rvi .

This abc is in fact sufficient for proving closed shells of leapfrog fullerenes by the
approach of Haemers [46], which is in turn based on the proof of Manolopou-
los et al. [47]. The approach of Haemers is also outlined in the excellent book
on algebraic graph theory by Godsil and Royle [43].

4. Leapfrog operations and cones with Fries matching

The molecular graphs of conjugated hydrocarbons allow numerous ways to
arrange the π -bonds in the old valence bond theory, and each structure formula
with a definite arrangement of the π -bonds is called a Kekulé structure. Since
each Kekulé structure represents a perfect matching of the n vertices of G, and
we will be particularly concerned with the Fries Kekulé structure, we allow our-
selves to call it the Fries matching and denote it by M. In the early days of
organic chemistry, Fries proposed a correlation between the number of benze-
noid rings in the structural formula and the stability of the hydrocarbon, and for
fullerenes a Fries Kekulé structure is realized when this number attains its max-
imum of n/3 [48]. The analog for the open-ended cones is a matching involving
either three or none of the edges of a hexagon, and none of the edges of the
smaller faces. Figure 1 shows the tightest possible configuration of 3 pentagons
consistent with a Fries matching.

Figure 1. The tightest possible configuration of 3 pentagons consistent with a Fries matching.
Edges belonging to the Fries matching are highlighted.
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The leapfrog idea was first introduced for closed trivalent carbon clusters
(cubic molecular graphs) by Fowler and Steer in [49], and it was later [47] proved
rigorously that this operation gives a cubic graph whose adjacency matrix has
exactly half of its eigenvalues positive and exactly half of its eigenvalues nega-
tive. The technique used in the slightly different route of Haemers [46] is however
easier to adapt to open-ended cones, and we will follow his line to set prelimi-
nary bounds on θn/2(A(G)) and θn/2+1(A(G)) for open-ended cones with Fries
matching.

The leapfrog algorithm to be used in this work consists of taking the line
graph L(g) of a graph g with outer vertices of valency 1 or 2, and then obtain-
ing G by splitting the vertices of L(g). The procedure is shown in figure 2. It is
clear that in general the faces of L(g) consists of the faces of g plus one trian-
gle for each 3-valent vertex of g, and thus every graph G with Fries matching
is a leapfrog. However, if there are adjacent 2-valent vertices in g, the leapfrog
will not have a Fries matching. This is different from what is the case for cubic
graphs, where it can easily be proved [49] that the leapfrog operation implies a
Fries matching of the resulting graph.

The important point here is that contraction of the vertices joined by the
edges of a Fries matching M gives the line graph L(g), such that

BT (M)A(G)B(M) = 2I + A(L(g)), (10)

where B(M) is the n×n/2 vertex-edge (0, 1) incidence matrix of M and A(L(g))

is the adjacency matrix of L(g). The adjacency matrix of a line graph and the
incidence matrix of the underlying graph are related by the following theorem
of Doob (see for example [43] or [44]):

Theorem 2. Let B(X) be the incidence matrix of the graph X, and let L be the
line graph of X. Then BT (X)B(X) = 2I + A(L)

Figure 2. A leapfrog algorithm for hydrocarbons. The highlighted edges in the leapfrog graph to the
right indicates the selected splitting of the vertices in the graph in the middle, which in turn is the

line graph of the hydrocarbon graph to the left.



H.H. Andersen and A.T. Skjeltorp / Stability of conjugated carbon nanocones 595

This implies that BT (M)A(G)B(M) is positive semi-definite, and, since the edges
of M are non-adjacent, BT (M)B(M) = 2I . Using point (a) of the last section we
thus obtain

θn/2(A(G)) � θn/2

(
BT (M)√

2
A(G)

B(M)√
2

)
� 0 (11)

as a preliminary bound on θn/2(A(G)) for cones with Fries matching. Contract-
ing the edges of any other matching of an open-ended cone will generally lead
to a graph having the complete graph K1,3—‘the claw’—as an induced subgraph
near the boundary, and the graph can therefore not be a line graph according to
the theorem of Beineke [50].

To establish a chemically interesting bound on θn/2+1(A(G)) a formal ver-
sion of the leapfrog operation on cubic graphs was used in [46], and we need to
show that an analogous procedure hold for the molecular graphs of hydrocar-
bons. The leapfrog operation on a cubic graph g can be coded as follows [43,
46]: Let ei be an edge of g, and let fj be a face of g that contains ei . Then the
pair (eifj ) is a vertex of the leapfrog graph G. If fj and fk are two faces con-
taining ei , the vertices (eifj ) and (eifk) are adjacent. If ei and ej are two sides
of a face fk,the vertices (eifk) and (ejfk) are adjacent if and only if ei and ej

are adjacent in g. If we relax the concept of ‘face’ a little bit, we can analo-
gously formalize the leapfrog operation on a graph g with 1-valent vertices along
the boundary: We declare the two regions on each side of an edge ei to be two
different faces fj and fk. The fact that we can move from one ‘face’ to another
along the boundary of g without crossing any edge does not hamper this algo-
rithm, and the edges of the Fries matching M of G now connects the ‘faces’ of g.

Following [46] we now give the edges of M an arbitrary orientation and let
D(M) be the (0, ±1) incidence matrix of the oriented edges; the nonzero entries
(D(M))V E are positive if the orientation of the edge E points from the vertex
V to the opposite end vertex of E, and negative if the orientation points against
V. Let us now calculate the various entries of DT (M)A(G)D(M). If we let V1(E)

and V2(E) denote respectively the vertices on which (D(M))V E are positive and
negative, we see that the diagonal entries are identical:

(DT (M)A(G)D(M))EE =
∑
V ′V

(DT (M))EV ′(A(G))V ′V (D(M))V E

= 2(DT (M))EV1(E)(D(M))V2(E)E

= −2. (12)

For the non-diagonal entries, at most one of the four terms in the sum

(DT (M)A(G)D(M))E′E =
∑
V ′V

(DT (M))E′V ′(A(G))V ′V (D(M))V E (13)
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is nonzero. This follows from the fact that each edge of M is one of three sides
of a hexagon in G, so two different edges of M is connected by at most one edge
(which is not part of M). According to the formal leapfrog operation, the edges
of M connect the ‘faces’ of g, and can be written E = ((eifj ), (eifk)) so the non-
zero non-diagonal entries have the form

(DT (M)A(G)D(M))((eifj ),(eifk)),((eifj ),(elfm))

= (DT (M))(eifj ),((eifj ),(eifk))(D(M))(elfj ),((elfj ),(elfm)), (14)

where ei and el are adjacent edges in a face of g. The (eiej ) entry of dT (g)d(g),
where d(g) is the incidence matrix for an orientation of g, is given by

(dT (g)d(g))eiej
= (d(g))v1(ei )el

− (d(g))v2(ei )el
, (15)

where v1(ei) and v2(ei) are respectively the vertices of g where the entries d(g)v,ei

are positive and negative. If we orient the edges E = ((eifj ), (eifk)) of M so that
V1(E) = (eifj ) if fj is on the right (or left) when we walk along ei in the direc-
tion specified by the orientation of g, we get

(DT (M)A(G)D(M))((eifj ),(eifk)),((elfj ),(elfm)) = −(dT (g)d(g))eiej
(16)

both if fj is on the right/left of ei and el and if fj is on the right/left of ei and
on the left/right of el as we walk in the direction specified by the orientation of
g. A straightforward calculation gives (dT (g)d(g))eiei

= 2, so, collecting results
gives

DT (M)A(G)D(M) = −dT (g)d(g), (17)

and DT (M)A(G)D(M) is thus negative semidefinite. As for B(M), we get
DT (M)D(M) = 2I , and we can again apply point (a) of the last section to
obtain the preliminary bound

0 � θ1

(
DT (M)√

2
A(G)

D(M)√
2

)
� θn/2+1(A(G)) (18)

which makes the first unoccupied Hückel orbital either non-bonding (θ = 0) or
anti-bonding (θ < 0).

5. Conjugated subgraphs of cones with Fries matching

We will now show that the preliminary eigenvalue bounds of the last sec-
tion hold also for conjugated induced subgraphs, without Fries matchings, of the
cone graphs with Fries matchings. Let G be the molecular graph of a cone with
Fries matching. Then there exist two complementary induced subgraphs G1 and
G2 on n1 and n2 even numbers of vertices. Since each row of B(M), the incidence
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matrix of the Fries matching M of G, has exactly one non-zero entry, the inci-
dence matrix of any other perfect matching of G is obtained by permuting the
rows of B(M). Since all graphs with even number of vertices have perfect match-
ings, there is a perfect matching M ′ ≡ M1+M2 of G where M1 and M2 are perfect
matchings of G1 and G2, and

B(M ′) = �B(M), (19)

where � is a row permutation operator;

� = �1i�2j�3k . . . , (20)

where �1i permutes the first and the i’th row, �2j permutes the second and the
j ’th row, and so on, such that the two nonzero entries of each column of B(M ′)
are located at the rows corresponding to the vertices connected by the edge of
M ′ corresponding to the actual column. This gives

BT (M ′)A(G)B(M ′) = BT (M)(. . . �3k�2j�1i)A(G)(�1i�2j�3k . . . )B(M)

= BT (M)A(G)B(M) (21)

since the permutation operations performed on A(G) from the left side are
reversed from the right side, so BT (M ′)A(G)B(M ′) is positive semidefinite accord-
ing to (11). If we replace B(M ′) with B(M ′ −M2), the matrix obtained by deleting
all columns corresponding to edges in M2 from B(M ′), in (21), we obtain

BT (M1)A(G1)B(M1) = BT (M ′ − M2)A(G)B(M ′ − M2) (22)

as a principal submatrix of BT (M ′)A(G)B(M ′), since A(G1) is a principal subm-
atrix of A(G), and none of the edges of M ′ connect G1 and G2. The second
inequality of Theorem 1 then gives

θn1/2(B
T (M1)A(G1)B(M1)) � θ(n1+n2)/2(B

T (M ′)A(G)B(M ′)) � 0, (23)

and we can once again apply point (a) in Section 2 to obtain the bound

θn1/2(A(G1) � θn1/2

(
BT (M1)√

2
A(G1)

B(M1)√
2

)
� 0 (24)

for any conjugated induced subgraph of a cone graph with Fries matching.
The permutation procedure followed by column deletion applies also to the

incidence matrix of the oriented Fries matching, D(M), and the first inequality
of Theorem 1 gives

θ1(D
T (M)A(G)D(M)) � θ1(D

T (M1)A(G1)D(M1)), (25)
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so DT (M1)A(G1)D(M1) is negative semidefinite, and we get

0 � θ1

(
DT (M1)√

2
A(G1)

D(M1)√
2

)
� θn1/2+1(A(G1)) (26)

when G1 and G are specified as above.

6. Closing the Hückel shells

In the last two sections we have established the preliminary bounds

θn/2(A(G)) � 0 � θn/2+1(A(G)) (27)

both for cones with Fries matching and for their induced conjugated subgraphs,
and closed Hückel shells are guaranteed for the cases where the equalities of (27)
can be eliminated. From the structure of the adjacency matrix of a graph with-
out loops or multiple edges it follows that for any vertex of the graph, the sum of
the components of the eigenvector on the adjacent vertices is equal to the eigen-
value multiplied by the component on the actual vertex (see for example [43]).
Thus, if

(A(G))u = 0 (28)

shall have a solution for a nonzero eigenvector u, this eigenvector must sum to
zero on all neighbors of any vertex without having all components equal to zero.
This fact, together with point (b) and (c) of Section 2, was used in the proof
of the eigenvalue theorem for leapfrogs of cubic graphs [46, 47]. However, this
proof involves the fact that each edge of the Fries matching then belongs to two
hexagons, and since this is not the case for the cones, we need to show explicitly
that (28) has only the trivial solution for cones with Fries matching. Thereafter
we will be able to close the Hückel shells also for a large fraction of the sub-
graphs.

6.1. Cones with Fries matching

Assume A(G)un/2 = 0. Then, according to (11) and point( b) of Section 2,
there is a vector vn/2 such that

BT (M)√
2

A(G)
B(M)√

2
vn/2 = 0 (29)

and

un/2 = B(M)√
2

vn/2 (30)
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Figure 3. The assumed eigenvector to θn/2(A(G)) = 0 at a pentagon.

which means that the components of un/2 must be equal on two vertices con-
nected by an edge of M. In figure 3, the components of a vector satisfying this
restriction on a pentagon is denoted by the letters a to e. To simultaneously sat-
isfy (28) these components must obey the equations

a + b + e = 0

b + a + c = 0

c + b + d = 0

d + c + e = 0

e + a + d = 0

which has a = b = c = d = e = 0 as the only solution. We see from figure
4 that this also implies that the eigenvector is zero on the adjacent hexagons,
which in turn implies three components equal to zero in the hexagons linked to
the pentagon by edges of the Fries matching as shown in figure 5. Solving the
equations for the remaining components of this hexagon, labeled q, r and s, gives
q = r = s = 0, and so on. If a 2-valent vertex at the boundary of the cone is
adjacent to a vertex on which un/2 is zero, un/2 must be zero on the other neigh-
bor too, so (28) has no non-trivial solution for un/2. This reasoning applies if the
pentagons are replaced by other faces of odd length too, so θn/2(A(G)) > 0 for
cones with pentagons and/or triangles at the tip, if they have a Fries matching.

Assume A(G)un/2+1 = 0. Then, according to point (c) of Section 2, there is
a vector v1, such that

un/2+1 = D(M)√
2

v1 (31)

which means that un/2+1 sums to zero on two vertices connected by an edge of M.
The equations for the components on a pentagon are in this case (see figure 6)
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Figure 4. The assumed eigenvector to θn/2(A(G)) = 0 around a pentagon.

Figure 5. The assumed eigenvector to θn/2(A(G)) = 0 at a hexagon linked to a pentagon or a
triangle by an edge of M.

−a + b + e = 0

−b + a + c = 0

−c + b + d = 0

−d + c + e = 0

−e + a + d = 0

with solution a = b = c = d = e = 0. It can be shown [47] that un/2+1 must
be zero on all faces not divisible by 6 if the graph has a Fries matching, so the
result we will get for θn/2+1(A(G)) is valid for cones with only squares at the tip
too. In figure 7 we denote the components of un/2+1 on a hexagon linked by an
edge of M to a face not divisible by 6 by the letters p to s. Solving equations
analogous to those above, gives r = 0 and p = q = −s. Since r = 0, the same
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Figure 6. The assumed eigenvector to θn/2+1(A(G)) = 0 at a pentagon.

Figure 7. The assumed eigenvector to θn/2+1(A(G)) = 0 at a hexagon linked by an edge of M to
a face not divisible by 6.

set of equations must be satisfied for each hexagon without edges in M. At the
boundary this implies adjacent hexagons with 3 edges in M where the compo-
nents of un/2+1 are equal to zero on each vertex. This in turn gives additional
zero-valued components in hexagons without edges in M, where the above men-
tioned equation set then requires zero-valued components on all vertices of these
hexagons, so finally each component of un/2+1 must be zero if θn/2+1(A(G)) = 0.

Now it is proved that

θn/2(A(G)) > 0 > θn/2+1(A(G)) (32)

for all cones with Fries matching and one or more faces of odd length at the
tip. Cones with one or two squares, and no pentagons or triangles, have bipar-
tite graphs and are thus subjected to the Pairing Theorem [51] of Coulson and
Rushbroke, stating that θi(A(G)) = −θn+1−i(A(G)) for an even bipartite graph
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Figure 8. Boundary topologies of cones having induced subgraphs with Fries matching.

G. Therefore, since 0 > θn/2+1(A(G)) for cones having a face not divisible by 6
and a Fries matching, (32) holds for these species too.

6.2. Cones with Fries matching of induced subgraphs

We restrict the further analysis to conjugated cones where each edge of the
molecular graph belongs to a hexagonal face, and the configuration of the non-
hexagonal faces is consistent with a Fries matching. If a conjugated cone without
Fries matching has an induced subgraph with Fries matching, the boundary
topologies will be as shown in figure 8; two adjacent 2-valent vertices who are
not part of the Fries matching (left), and/or a single 2-valent vertex (right)
between two hexagons, each having 3 edges in M. The latter can only appear
an even number of times in a conjugated cone graph, since n is then even. In
the first case it is easy to see that un/2 and un/2+1 must be zero on the two adja-
cent vertices outside the Fries matching, since both vectors are zero on neigh-
bors in M. In the second case it is always possible to make a matching covering
the isolated vertices by a rearrangement involving only the edges of M near the
boundary of the cone, so that the 2-valent vertices connected by edges in the new
matching have neighbors on which un/2 and un/2+1 are zero, and the equalities of
(27) are eliminated also for this subclass of cones.

7. Summary and conclusions

Via a leapfrog algorithm for hydrocarbons we have used interlacing and the
structure of the adjacency matrix to show that all carbon nanocones with Fries
matching have closed Hückel shells. Our main line of attack is the same as the
one used by other authors for the leapfrog fullerenes. Contrary to what is the
case for the fullerenes, we have shown that the results obtained for the leapfrog
cones can be significantly extended: The preliminary bounds on the eigenvalues
hold for all conjugated carbon nanocones whose molecular graphs are induced
subgraphs of cones with Fries matching, and the Hückel shells are strictly closed
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for cones where each edge belongs to a hexagonal face and the configuration of
the non-hexagonal faces is consistent with a Fries matching.

These cones are favored also by valence bond theory, since the possibil-
ity to keep all double bonds outside the non-hexagonal faces suppresses the
Mills–Nixon effect [52, 53]. This brings us to the question about the coincidence
between these topologies and the pentagon configurations favored by the ab ini-
tio energy calculations of [34]. By computing the Hückel spectra of the isomers
compared in that work, we find that only in the case of two pentagons have both
systems closed Hückel shells. For three pentagons a C3v-symmetric C40H12 tip,
which has an induced subgraph with Fries matching and thus closed shells, is
compared with a degenerate isomer with θ20 = θ21 = 0.182. In the latter case
the two last electrons can be distributed over the two degenerate states in four
possible ways; three singlets and one triplet state. In the analogous case of the
pseudo-aromatic C4nH4n molecules these states are split by Coulomb repulsion
and static bond alternation occur [54, 55]. If the same happens to the above
mentioned isomer, the valence bond picture can be invoked, and it is readily
understood that it is unfavored since some double bounds need to pass through
the pentagons of this configuration. However, without a complementary study
of the vibrational spectrum, it cannot be decided if such a static deformation is
real or if the underlying Born–Openheimer approximation breaks down. In our
opinion, questions of this type are now of secondary interest for the cones, and
our further theoretical efforts will be focused on the large fraction of closed-shell
topologies unveiled in this work.
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